卧薪尝胆,厚积薄发。
color
Date: Mon Mar 04 18:30:20 CST 2019
In Category:
NoCategory
Description:
给一棵内向基环树,求本质不同的染色方案数。
$1\leqslant n\leqslant 10^5$
Solution:
首先考虑如果是树怎么做,如果这个点有很多棵子树,那么我们可以把每种染色方式看成一个染色,但是有一个问题就是子树可能会同构,我们就用树哈希的方式把所有子树找出来,然后对于每一个子树的等价类,相当于是一个物品相同盒子不同盒子可以空乒乓球装箱问题,可以用插板法解决,让后我们就得出了每棵子树的方案数,然后再来考虑环,环和子树的区别就是子树可以随便换但是环只能旋转,于是我们还是把每一种染色方案都看成一个染色然后在环上做
$polya$
定理就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cctype>
#include<cstring>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
int gcd(int a,int b){return (b == 0 ? a : gcd(b,a % b));}
int n,m;
#define MAXN 100010
int fa[MAXN];
#define MOD 1000000007
#define MAX 200010
#define N 200000
int fac[MAX],inv[MAX];
int power(int a,int b)
{
int res = 1;
for(;b > 0;b = b >> 1,a = 1ll * a * a % MOD)if(b & 1)res = 1ll * res * a % MOD;
return res;
}
struct edge
{
int to,nxt;
}e[MAXN << 1];
int edgenum = 0;
int lin[MAXN] = {0};
int ind[MAXN];
void add(int a,int b)
{
++ind[b];
e[++edgenum] = (edge){b,lin[a]};lin[a] = edgenum;
e[++edgenum] = (edge){a,lin[b]};lin[b] = edgenum;
return;
}
bool incir[MAXN];
int siz[MAXN];
struct hash
{
#define V1 1001001
#define V2 19260817
#define M1 1000000007
#define M2 998244353
int v1,v2,f;
friend bool operator < (hash a,hash b)
{
return (a.v1 == b.v1 ? (a.v2 == b.v2 ? a.f < b.f : a.v2 < b.v2) : a.v1 < b.v1);
}
friend bool operator == (hash a,hash b)
{
return (a.v1 == b.v1 && a.v2 == b.v2);
}
}f[MAXN];
hash s[MAXN];
int top = 0;
int C(int n,int m)
{
if(n < m)return 0;
if(n <= N)return 1ll * fac[n] * inv[m] % MOD * inv[n - m] % MOD;
else
{
int ans = inv[n - m];
for(int i = m + 1;i <= n;++i)ans = 1ll * ans * i % MOD;
return ans;
}
}
int calc(int n,int m)
{
return C(n + m - 1,m - 1);
}
void dp(int k,int fa)
{
siz[k] = 1;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == fa || incir[e[i].to])continue;
dp(e[i].to,k);
siz[k] += siz[e[i].to];
}
top = 0;
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(e[i].to == fa || incir[e[i].to])continue;
s[++top] = f[e[i].to];
}
sort(s + 1,s + 1 + top);
f[k].v1 = 1;f[k].v2 = 1;
for(int i = 1;i <= top;++i)
{
f[k].v1 = (1ll * f[k].v1 * V1 % M1 + s[i].v1) % M1;
f[k].v2 = (1ll * f[k].v2 * V2 % M2 + s[i].v2) % M2;
}
s[top + 1].v1 = -1;s[top + 1].v2 = -1;
f[k].f = m % MOD;
int cnt = 0;//cout << " : " << k << endl;cout << "st" << endl;
for(int i = 1;i <= top;++i)
{
if(!(s[i] == s[i + 1]))
{
++cnt;//cout << cnt << " -> " << s[i].f << endl;
f[k].f = 1ll * f[k].f * calc(cnt,s[i].f) % MOD;
cnt = 0;
}
else ++cnt;
}//cout << "ed" << endl;
f[k].v1 = 1ll * f[k].v1 * siz[k] % MOD;
f[k].v2 = 1ll * f[k].v2 * siz[k] % MOD;
return;
}
int cir[MAXN];
int nxt[MAXN];
int main()
{
fac[0] = 1;for(int i = 1;i <= N;++i)fac[i] = 1ll * fac[i - 1] * i % MOD;
inv[N] = power(fac[N],MOD - 2);for(int i = N - 1;i >= 0;--i)inv[i] = 1ll * inv[i + 1] * (i + 1) % MOD;
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)add(i,fa[i] = rd());
queue<int> q;
for(int i = 1;i <= n;++i)if(ind[i] == 0)q.push(i);
while(!q.empty())
{
int k = q.front();q.pop();
for(int i = lin[k];i != 0;i = e[i].nxt)
{
if(ind[e[i].to] == 0)continue;
if((--ind[e[i].to]) == 0)q.push(e[i].to);
}
}
for(int i = 1;i <= n;++i)if(ind[i] != 0)incir[i] = true,++cir[0];
for(int i = 1;i <= n;++i)if(incir[i])dp(i,0);
for(int i = 1;i <= n;++i)
{
if(incir[i])for(int k = 1,cur = i;k <= cir[0];++k,cur = fa[cur])cir[k] = cur;
}
for(int i = 2,j = 0;i <= cir[0];++i)
{
while(j && !(f[cir[i]] == f[cir[j + 1]]))j = nxt[j];
if(f[cir[i]] == f[cir[j + 1]])++j;
nxt[i] = j;
}
int len = nxt[cir[0]];
while(cir[0] % (cir[0] - len) != 0)len = nxt[len];
len = cir[0] - len;
int val = 1;
for(int i = 1;i <= len;++i)val = 1ll * val * f[cir[i]].f % MOD;
int tot = cir[0] / len;
int ans = 0;
for(int i = 1;i <= tot;++i)
{
int c = gcd(i,tot);
ans = (ans + power(val,c)) % MOD;
}
ans = 1ll * ans * power(tot,MOD - 2) % MOD;
cout << ans << endl;
return 0;
}
In tag:
树-树哈希 数学-组合数学-polya定理
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡