卧薪尝胆,厚积薄发。
math
Date: Mon Mar 04 14:08:05 CST 2019
In Category:
NoCategory
Description:
$R$
是圆排列数,
$D$
是错位排列数,
$S$
是第二类斯特林数,求:
$$
\sum_{i=1}^n\sum_{j=1}^iS_{i,j}D_jR_j
$$
$1\leqslant n\leqslant 10^5$
Solution:
交换一下求和号然后把斯特林数展开:
$$
\begin{align}
&\sum_{j=1}^nD_jR_j\sum_{i=j}^n\frac1{j!}\sum_{k=0}^j(-1)^{j-k}\binom jki^k\\
=&\sum_{j=1}^nD_jR_j\sum_{k=0}^j\frac{(-1)^{j-k}}{(j-k)!}\frac{\begin{align}\sum_{i=j}^ni^k\end{align}}{k!}
\end{align}
$$
看上去非常像一个卷积,但是最后面那个等比数列下标从
$j$
开始,不能直接卷积。
退回到最初的状态,我们发现原式实际上等于这个:
$$
\sum_{i=1}^n\sum_{j=1}^nS_{i,j}D_jR_j
$$
然后再推式子就变成了:
$$
\sum_{j=1}^nD_jR_j\sum_{k=0}^j\frac{(-1)^{j-k}}{(j-k)!}\frac{\begin{align}\sum_{i=1}^ni^k\end{align}}{k!}
$$
于是
$NTT$
就行了。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n;
#define MAXN 400010
int D[MAXN],R[MAXN];
int fac[MAXN],inv[MAXN];
#define P 998244353
int power(int a,int b)
{
int res = 1;
for(;b > 0;a = 1ll * a * a % P,b = b >> 1)if(b & 1)res = 1ll * res * a % P;
return res;
}
int calc(int a,int q,int n)
{
if(q == 0)return a;if(q == 1)return 1ll * a * n % P;
return 1ll * a * (power(q,n) + P - 1) % P * power(q + P - 1,P - 2) % P;
}
int ww[MAXN << 1],*g = ww + MAXN;
int rev[MAXN];
void NTT(int f[],int l,int type)
{
for(int i = 0;i < l;++i)
{
if(i < rev[i])swap(f[i],f[rev[i]]);
}
for(int i = 2;i <= l;i = i << 1)
{
int wn = g[type * l / i];
for(int j = 0;j < l;j += i)
{
int w = 1;
for(int k = j;k < j + i / 2;++k)
{
int u = f[k],t = 1ll * w * f[k + i / 2] % P;
f[k] = (u + t) % P;
f[k + i / 2] = (u - t + P) % P;
w = 1ll * w * wn % P;
}
}
}
if(type == -1)
{
int ni = power(l,P - 2);
for(int i = 0;i < l;++i)f[i] = 1ll * f[i] * ni % P;
}
return;
}
int a[MAXN],b[MAXN],res[MAXN];
int main()
{
scanf("%d",&n);
fac[0] = 1;for(int i = 1;i <= n;++i)fac[i] = 1ll * fac[i - 1] * i % P;
inv[n] = power(fac[n],P - 2);for(int i = n - 1;i >= 0;--i)inv[i] = 1ll * inv[i + 1] * (i + 1) % P;
R[1] = 1;for(int i = 2;i <= n;++i)R[i] = 1ll * R[i - 1] * (i - 1) % P;
D[1] = 0;D[0] = 1;for(int i = 2;i <= n;++i)D[i] = 1ll * (i - 1) * (D[i - 1] + D[i - 2]) % P;
int ans = 0;
for(int i = 0;i <= n;++i)a[i] = 1ll * power(P - 1,i) % P * inv[i] % P;
for(int i = 0;i <= n;++i)b[i] = 1ll * calc(i,i,n) * inv[i] % P;
int l = 0,len = 1;
for(;len <= n * 2;len = len << 1)++l;
for(int i = 0;i < len;++i)rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (l - 1));
g[0] = g[-len] = 1;g[1] = g[1 - len] = power(3,(P - 1) / len);
for(int i = 2;i < len;++i)g[i] = g[i - len] = 1ll * g[i - 1] * g[1] % P;
NTT(a,len,1);NTT(b,len,1);
for(int i = 0;i < len;++i)res[i] = 1ll * a[i] * b[i] % P;
NTT(res,len,-1);
for(int j = 1;j <= n;++j)
{
ans = (ans + 1ll * res[j] * D[j] % P * R[j] % P) % P;
}
cout << ans << endl;
return 0;
}
In tag:
数学-多项式-快速数论变换
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡