卧薪尝胆,厚积薄发。
phi
Date: Mon Mar 04 14:46:16 CST 2019
In Category:
NoCategory
Description:
求区间积的欧拉函数。
$1\leqslant n\leqslant 2\times 10^5,1\leqslant a_i\leqslant 10^6$
Solution1:
值域分块,小于等于
$1000$
的质数只有
$168$
个,可以用线段树
$+bitset$
暴力维护,然后对于每个询问乘一个
$\frac{p-1}p$
,大于
$1000$
的质因子每个数只有一个,因此单次插入一个数是
$O(1)$
的,可以用莫队,复杂度
$O(n\sqrt n)$
。
Code1:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<bitset>
#include<cctype>
#include<cstring>
using namespace std;
int n,p;
#define MAXN 200010
#define P 998244353
#define I inline
#define re register
I int rd()
{
re int res = 0;re char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res;
}
I int power(int a,int b)
{
re int res = 1;
for(;b > 0;a = 1ll * a * a % P,b = b >> 1)if(b & 1)res = 1ll * res * a % P;
return res;
}
I int inver(int a){return power(a,P - 2);}
int a[MAXN];
int ans[MAXN];
int s[MAXN];
#define N 1000000
int prime[N + 5],bel[N + 5],tot = 0,mindiv[N + 5],inv[MAXN];
int inv1[MAXN],inv2[MAXN];
bool isprime[N + 5];
int mxpr[MAXN];
struct query
{
int l,r,id;
}q[MAXN];
int sum[MAXN];
I int calc(int p,int c)
{
if(c == 0)return 1;
return 1ll * power(p,c - 1) * (p - 1) % P;
}
int blo,pos[MAXN];
bool cmp_pos(query a,query b)
{
if(pos[a.l] != pos[b.l])return pos[a.l] < pos[b.l];
else if(pos[a.l] & 1)return a.r < b.r;
else return a.r > b.r;
}
int curphi = 1;
int cnt[N + 5];
I void add(int v)
{
if(v == 0)return;
if(cnt[v] == 0)curphi = 1ll * curphi * (v - 1) % P;
else curphi = 1ll * curphi * v % P;
++cnt[v];
return;
}
I void del(int v)
{
if(v == 0)return;
--cnt[v];
if(cnt[v] == 0)curphi = 1ll * curphi * inv2[bel[v]] % P;
else curphi = 1ll * curphi * inv1[bel[v]] % P;
return;
}
bitset<180> ss[MAXN];
struct node
{
int lc,rc;
bitset<180> s;
int val;
}t[MAXN << 1];
int ptr = 0;
int newnode(){return ++ptr;}
int root;
#define mid ((l + r) >> 1)
void build(int &rt,int l,int r)
{
rt = newnode();
if(l == r)
{
t[rt].s = ss[l];
if(mxpr[l])t[rt].val = a[l] / mxpr[l];
else t[rt].val = a[l];
return;
}
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
t[rt].val = 1ll * t[t[rt].lc].val * t[t[rt].rc].val % P;
t[rt].s = t[t[rt].lc].s | t[t[rt].rc].s;
return;
}
int queryv(int rt,int L,int R,int l,int r)
{
if(L <= l && r <= R)return t[rt].val;
if(R <= mid)return queryv(t[rt].lc,L,R,l,mid);
if(L > mid)return queryv(t[rt].rc,L,R,mid + 1,r);
return 1ll * queryv(t[rt].lc,L,R,l,mid) * queryv(t[rt].rc,L,R,mid + 1,r) % P;
}
bitset<180> queryb(int rt,int L,int R,int l,int r)
{
if(L <= l && r <= R)return t[rt].s;
if(R <= mid)return queryb(t[rt].lc,L,R,l,mid);
if(L > mid)return queryb(t[rt].rc,L,R,mid + 1,r);
return queryb(t[rt].lc,L,R,l,mid) | queryb(t[rt].rc,L,R,mid + 1,r);
}
int main()
{
n = rd();
re int mx = 0;
for(re int i = 1;i <= n;++i)mx = max(a[i] = rd(),mx);
for(re int i = 2;i <= mx;++i)isprime[i] = true;
for(re int i = 2;i <= mx;++i)
{
if(isprime[i])prime[++tot] = i,bel[i] = tot,mindiv[i] = i;
for(re int j = 1;j <= tot && i * prime[j] <= mx;++j)
{
isprime[i * prime[j]] = false;mindiv[i * prime[j]] = prime[j];
if(i % prime[j] == 0)break;
}
}
int mv = 0;
for(re int i = 1;i <= n;++i)
{
re int s = a[i];
while(s != 0 && s != 1)
{
if(mindiv[s] > 1000)mxpr[i] = mindiv[s],s /= mindiv[s];
else
{
re int cnt = 0,v = mindiv[s];
while(s % v == 0)s /= v,++cnt;
ss[i][bel[v]] = true;
mv = max(mv,bel[v]);
}
}
}
build(root,1,n);
p = rd();
for(re int k = 1;k <= mv;++k)inv[k] = 1ll * inver(prime[k]) * (prime[k] - 1) % P;
for(re int k = 1;k <= tot;++k)inv1[k] = inver(prime[k]),inv2[k] = inver(prime[k] - 1);
for(re int i = 1;i <= p;++i)
{
q[i].id = i;q[i].l = rd();q[i].r = rd();
ans[i] = queryv(root,q[i].l,q[i].r,1,n);
re bitset<180> s = queryb(root,q[i].l,q[i].r,1,n);
for(re int k = 1;k <= mv;++k)if(s[k])ans[i] = 1ll * ans[i] * inv[k] % P;
}
blo = sqrt(n);
for(re int i = 1;i <= n;++i)pos[i] = (i - 1) / blo + 1;
sort(q + 1,q + 1 + p,cmp_pos);
for(re int i = 1,l = 1,r = 0;i <= p;++i)
{
while(r < q[i].r)add(mxpr[++r]);
while(l > q[i].l)add(mxpr[--l]);
while(r > q[i].r)del(mxpr[r]),--r;
while(l < q[i].l)del(mxpr[l]),++l;
ans[q[i].id] = 1ll * ans[q[i].id] * curphi % P;
}
for(re int i = 1;i <= p;++i)printf("%d\n",ans[i]);
return 0;
}
Solution2:
如果强制在线的话,可以用主席树,让每个数只在最靠右的位置贡献
$\frac{p-1}p$
,于是插入就是在上一个位置除一个
$\frac p{p-1}$
,在这个位置乘一个
$p-1$
。
Code2:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<bitset>
#include<cctype>
#include<cstring>
using namespace std;
int n,p;
#define MAXN 200010
#define P 998244353
#define I inline
#define re register
I int rd()
{
re int res = 0;re char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res;
}
I int power(int a,int b)
{
re int res = 1;
for(;b > 0;a = 1ll * a * a % P,b = b >> 1)if(b & 1)res = 1ll * res * a % P;
return res;
}
I int inver(int a){return power(a,P - 2);}
int a[MAXN];
int ans[MAXN];
int s[MAXN];
#define N 1000000
int prime[N + 5],bel[N + 5],tot = 0,mindiv[N + 5],inv[MAXN];
bool isprime[N + 5];
int mxpr[MAXN];
I int calc(int p,int c)
{
if(c == 0)return 1;
return 1ll * power(p,c - 1) * (p - 1) % P;
}
namespace ST
{
bitset<180> ss[MAXN];
struct node
{
int lc,rc;
bitset<180> s;
int val;
}t[MAXN << 1];
int ptr = 0;
int newnode(){return ++ptr;}
int root;
#define mid ((l + r) >> 1)
void build(int &rt,int l,int r)
{
rt = newnode();
if(l == r)
{
t[rt].s = ss[l];
if(mxpr[l])t[rt].val = a[l] / mxpr[l];
else t[rt].val = a[l];
return;
}
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
t[rt].val = 1ll * t[t[rt].lc].val * t[t[rt].rc].val % P;
t[rt].s = t[t[rt].lc].s | t[t[rt].rc].s;
return;
}
int queryv(int rt,int L,int R,int l,int r)
{
if(L <= l && r <= R)return t[rt].val;
if(R <= mid)return queryv(t[rt].lc,L,R,l,mid);
if(L > mid)return queryv(t[rt].rc,L,R,mid + 1,r);
return 1ll * queryv(t[rt].lc,L,R,l,mid) * queryv(t[rt].rc,L,R,mid + 1,r) % P;
}
bitset<180> queryb(int rt,int L,int R,int l,int r)
{
if(L <= l && r <= R)return t[rt].s;
if(R <= mid)return queryb(t[rt].lc,L,R,l,mid);
if(L > mid)return queryb(t[rt].rc,L,R,mid + 1,r);
return queryb(t[rt].lc,L,R,l,mid) | queryb(t[rt].rc,L,R,mid + 1,r);
}
}
namespace FT
{
struct node
{
int lc,rc;
int val;
}t[MAXN * 30];
int ptr = 0;
int newnode(){return ++ptr;}
int root[MAXN];
int last[N + 5];
void build(int &rt,int l,int r)
{
rt = newnode();t[rt].val = 1;
if(l == r)return;
build(t[rt].lc,l,mid);
build(t[rt].rc,mid + 1,r);
return;
}
void insert(int &rt,int p,int v,int l,int r)
{
int k = newnode();t[k] = t[rt];rt = k;
if(l == r){t[rt].val = 1ll * t[rt].val * v % P;return;}
if(p <= mid)insert(t[rt].lc,p,v,l,mid);
else insert(t[rt].rc,p,v,mid + 1,r);
t[rt].val = 1ll * t[t[rt].lc].val * t[t[rt].rc].val % P;
return;
}
int query(int rt,int L,int R,int l,int r)
{
if(L <= l && r <= R)return t[rt].val;
if(R <= mid)return query(t[rt].lc,L,R,l,mid);
if(L > mid)return query(t[rt].rc,L,R,mid + 1,r);
return 1ll * query(t[rt].lc,L,R,l,mid) * query(t[rt].rc,L,R,mid + 1,r) % P;
}
}
int main()
{
n = rd();
re int mx = 0;
for(re int i = 1;i <= n;++i)mx = max(a[i] = rd(),mx);
for(re int i = 2;i <= mx;++i)isprime[i] = true;
for(re int i = 2;i <= mx;++i)
{
if(isprime[i])prime[++tot] = i,bel[i] = tot,mindiv[i] = i;
for(re int j = 1;j <= tot && i * prime[j] <= mx;++j)
{
isprime[i * prime[j]] = false;mindiv[i * prime[j]] = prime[j];
if(i % prime[j] == 0)break;
}
}
int mv = 0;
for(re int i = 1;i <= n;++i)
{
re int s = a[i];
while(s != 0 && s != 1)
{
if(mindiv[s] > 1000)mxpr[i] = mindiv[s],s /= mindiv[s];
else
{
re int cnt = 0,v = mindiv[s];while(s % v == 0)s /= v,++cnt;
ST::ss[i][bel[v]] = true;mv = max(mv,bel[v]);
}
}
}
ST::build(ST::root,1,n);
p = rd();
for(re int k = 1;k <= mv;++k)inv[k] = 1ll * inver(prime[k]) * (prime[k] - 1) % P;
FT::build(FT::root[0],1,n);
for(re int i = 1;i <= n;++i)
{
FT::root[i] = FT::root[i - 1];
if(!mxpr[i])continue;
if(FT::last[mxpr[i]] != 0)FT::insert(FT::root[i],FT::last[mxpr[i]],1ll * mxpr[i] * inver(mxpr[i] - 1) % P,1,n);
FT::insert(FT::root[i],i,mxpr[i] - 1,1,n);
FT::last[mxpr[i]] = i;
}
int l,r;
for(re int i = 1;i <= p;++i)
{
l = rd();r = rd();
ans[i] = ST::queryv(ST::root,l,r,1,n);
re bitset<180> s = ST::queryb(ST::root,l,r,1,n);
for(re int k = 1;k <= mv;++k)if(s[k])ans[i] = 1ll * ans[i] * inv[k] % P;//cout << ans[i] << endl;
ans[i] = 1ll * ans[i] * FT::query(FT::root[r],l,r,1,n) % P;
printf("%d\n",ans[i]);
}
return 0;
}
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡