卧薪尝胆,厚积薄发。
排列
Date: Thu Mar 07 16:02:01 CST 2019
In Category:
NoCategory
Description:
对每个
$i\in [1,n]$
求出每一个环的长度都在给出的集合
$S$
中的排列个数。
$1\leqslant n\leqslant 10^5$
Solution:
先列式子,枚举环的个数
$k$
,长为
$l$
的只有一个环的排列有
$(l-1)!$
个:
$$
\begin{align}
f_i&=\sum_{k=1}^\infty\frac{\sum_{l_1+l_2+\cdots+l_k=i}\binom i{l_1,l_2,\dots,l_k}\prod_{j=1}^k[l_j\in S](l_j-1)!}{k!}\\
&=\sum_{k\geqslant 1}i!\frac{\sum_{l_1+l_2+\cdots+l_k=i}\prod_{j=1}^k\frac{[l_j\in S]}{(l_j-1)!}}{k!}
\end{align}
$$
设
$S(x)$
为
$s_i=\frac{[i\in S]}{(i-1)!}$
的普通生成函数。
$$
\frac{f_i}{i!}=\sum_{k\geqslant 1}\frac{S^k}{k!}=e^S
$$
于是多项式求
$\exp$
即可。
Code:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
using namespace std;
int n,m;
#define MAXN 400010
#define P 950009857
#define G 7
int fac[MAXN];
inline int rd()
{
register int res = 0;register char c = getchar();
while(!isdigit(c))c = getchar();
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res;
}
int S[MAXN];
int a[MAXN];
int rev[MAXN];
int ww[MAXN << 1],*g = ww + MAXN;
int power(int a,int b)
{
int res = 1;
for(;b > 0;b = b >> 1,a = 1ll * a * a % P)if(b & 1)res = 1ll * res * a % P;
return res;
}
int inver(int a){return power(a,P - 2);}
int init(int n)
{
int l = 0,len = 1;
for(;len <= n;len = len << 1)++l;
for(int i = 0;i < len;++i)rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (l - 1));
g[0] = g[-len] = 1;g[1] = g[1 - len] = power(G,(P - 1) / len);
for(int i = 2;i < len;++i)g[i] = g[i - len] = 1ll * g[i - 1] * g[1] % P;
return len;
}
void NTT(int f[],int l,int type)
{
for(int i = 0;i < l;++i)
{
if(i < rev[i])swap(f[i],f[rev[i]]);
}
for(int i = 2;i <= l;i = i << 1)
{
int wn = g[type * l / i];
for(int j = 0;j < l;j += i)
{
int w = 1;
for(int k = j;k < j + i / 2;++k)
{
int u = f[k],t = 1ll * w * f[k + i / 2] % P;
f[k] = (u + t) % P;
f[k + i / 2] = (u - t + P) % P;
w = 1ll * w * wn % P;
}
}
}
if(type == -1)
{
int ni = power(l,P - 2);
for(int i = 0;i < l;++i)f[i] = 1ll * f[i] * ni % P;
}
return;
}
int c[MAXN];
void poly_inv(int deg,int a[],int b[])
{
if(deg == 1){b[0] = power(a[0],P - 2);return;}
poly_inv((deg + 1) >> 1,a,b);
int l = init(deg * 2);
for(int i = 0;i < deg;++i)c[i] = a[i];
for(int i = deg;i < l;++i)c[i] = 0;
NTT(c,l,1);NTT(b,l,1);
for(int i = 0;i < l;++i)b[i] = (2ll * b[i] - 1ll * c[i] * b[i] % P * b[i] % P + P) % P;
NTT(b,l,-1);
for(int i = deg;i < l;++i)b[i] = 0;
return;
}
int lnt[MAXN];
void poly_ln(int deg,int a[],int b[])
{
poly_inv(deg,a,lnt);
for(int i = 0;i < deg;++i)b[i] = a[i];
for(int i = 0;i < deg;++i)b[i] = 1ll * (i + 1) * b[i + 1] % P;
int l = init(deg * 2);
NTT(b,l,1);NTT(lnt,l,1);
for(int i = 0;i < l;++i)b[i] = 1ll * b[i] * lnt[i] % P;
NTT(b,l,-1);
for(int i = deg - 1;i >= 1;--i)b[i] = 1ll * inver(i) * b[i - 1] % P;b[0] = 0;
for(int i = 0;i < l;++i)lnt[i] = 0;
for(int i = deg;i < l;++i)b[i] = 0;
return;
}
int expt[MAXN];
void poly_exp(int deg,int a[],int b[])
{
if(deg == 1)
{
b[0] = 1;
return;
}
poly_exp((deg + 1) >> 1,a,b);
poly_ln(deg,b,expt);
for(int i = 0;i < deg;++i)expt[i] = (a[i] - expt[i] + P) % P;
expt[0] = (expt[0] + 1) % P;
int l = init(deg * 2);
NTT(expt,l,1);NTT(b,l,1);
for(int i = 0;i < l;++i)b[i] = 1ll * b[i] * expt[i] % P;
NTT(b,l,-1);
for(int i = 0;i < l;++i)expt[i] = 0;
for(int i = deg;i < l;++i)b[i] = 0;
return;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= m;++i)S[rd()] = 1;
for(int i = 1;i <= n;++i)S[i] = 1ll * S[i] * inver(i) % P;
poly_exp(n + 1,S,a);
for(int i = 1,cur = 1;i <= n;++i,cur = 1ll * cur * i % P)printf("%d\n",1ll * a[i] * cur % P);
return 0;
}
In tag:
数学-多项式-多项式指数函数
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡