卧薪尝胆,厚积薄发。
DZY Loves Data Structures
Date: Thu Mar 07 21:47:51 CST 2019
In Category:
NoCategory
Description:
有
$n$
个序列,刚开始每个序列只有
$1$
个元素,每个元素有两个属性
$A$
和
$B$
,
$m$
个操作,分为
$6$
种:
1、修改第
$i$
个序列的第
$j$
个元素的
$A$
属性。
2、修改第
$i$
个序列的第
$j$
个元素的
$B$
属性。
3、将第
$y$
个序列接在第
$x$
个序列后。
4、询问第
$x$
个序列第
$l$
到第
$r$
个元素中
$A$
属性大于
$val$
的个数。
5、询问第
$x$
个序列第
$l$
到第
$r$
个元素中
$A$
属性第
$k$
大。
6、询问第
$x$
个序列第
$l$
到第
$r$
个元素中,
$A$
属性在
$[a_l,a_r]$
范围内的
$B$
属性最大值。
$1\leqslant n\leqslant 250000,1\leqslant m\leqslant 450000$
Solution:
看最后一个询问就知道肯定要写二维数据结构,那最大的可能性就是树套树了。观察一下操作不难发现应该是
$A$
一维
$id$
一维,但是由于我们要查询区间第
$k$
大,那
$A$
就应该是外层,于是我们用以
$A$
为下标的动态开点线段树作为树套树的外层,用以
$id$
为下标的
$fhq-treap$
为树套树的外层,第
$1,2$
个操作就是删除和插入,第三个可以用线段树合并做,每次把对应节点的平衡树也合并起来,第四个,第五个和第六个显然就是在线段树上查询。
Code:
#include<bits/stdc++.h>
using namespace std;
inline int rd()
{
register int res = 0,f = 1;register char c = getchar();
while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}
while(isdigit(c))res = (res << 1) + (res << 3) + c - '0',c = getchar();
return res * f;
}
#define MAXN 250010
#define N 1000000
int n,m;
#define ls t[rt].lc
#define rs t[rt].rc
namespace FHQ
{
struct node{int lc,rc,prio,id,tag,a,b,si,bmx;node(){id = tag = a = b = bmx = 0;}}t[MAXN * 30];
int ptr = 0,del[MAXN * 30],del_ptr = 0;
int newnode(){int k;if(del_ptr)k = del[del_ptr--];else k = ++ptr;t[k].prio = rand();return k;}
void recycle(int rt){memset(&t[rt],0,sizeof(&t[rt]));del[++del_ptr] = rt;return;}
int cnode(int id,int va,int vb){int k = newnode();t[k].id = id;t[k].a = va;t[k].b = t[k].bmx = vb;t[k].si = 1;return k;}
void maintain(int rt){t[rt].si = t[ls].si + t[rs].si + 1;t[rt].bmx = max(max(t[ls].bmx,t[rs].bmx),t[rt].b);return;}
void addtag(int rt,int tag){if(rt == 0)return;t[rt].tag += tag;t[rt].id += tag;}
void down(int rt){if(ls != 0)addtag(ls,t[rt].tag);if(rs != 0)addtag(rs,t[rt].tag);t[rt].tag = 0;}
int merge(int a,int b){if(a == 0 || b == 0)return a + b;
if(t[a].prio < t[b].prio){down(a);t[a].rc = merge(t[a].rc,b);maintain(a);return a;}
else{down(b);t[b].lc = merge(a,t[b].lc);maintain(b);return b;}}
void split(int rt,int k,int &x,int &y){
if(rt == 0){x = y = 0;return;}down(rt);if(t[rt].id <= k){x = rt;split(rs,k,rs,y);}else{y = rt;split(ls,k,x,ls);}maintain(rt);return;}
void insert(int &rt,int id,int a,int b){int x,y;split(rt,id,x,y);rt = merge(x,merge(cnode(id,a,b),y));return;}
void remove(int &rt,int id){int x,y,z;split(rt,id - 1,x,y);split(y,id,y,z);recycle(y);rt = merge(x,z);return;}
node num(int rt,int p){if(p == t[ls].si + 1)return t[rt];down(rt);if(p <= t[ls].si)return num(ls,p);return num(rs,p - t[ls].si - 1);}
int idcnt(int &rt,int l,int r){int x,y,z,res;split(rt,l - 1,x,y);split(y,r,y,z);res = t[y].si;rt = merge(x,merge(y,z));return res;}
int bmax(int &rt,int l,int r){int x,y,z,res;split(rt,l - 1,x,y);split(y,r,y,z);res = t[y].bmx;rt = merge(x,merge(y,z));return res;}
}
namespace ST
{
struct node{int lc,rc;int tag,root;}t[MAXN * 30];
int ptr = 0;
int newnode(){return ++ptr;}
int root[MAXN];
#define mid ((l + r) >> 1)
void addtag(int rt,int tag){t[rt].tag += tag;FHQ::addtag(t[rt].root,tag);return;}
void pushdown(int rt){addtag(ls,t[rt].tag);addtag(rs,t[rt].tag);t[rt].tag = 0;return;}
void ins(int &rt,int id,int vala,int valb,int l,int r){if(rt == 0)rt = newnode();FHQ::insert(t[rt].root,id,vala,valb);
if(l == r)return;pushdown(rt);if(vala <= mid)ins(ls,id,vala,valb,l,mid);else ins(rs,id,vala,valb,mid + 1,r);}
void rem(int rt,int id,int vala,int valb,int l,int r){FHQ::remove(t[rt].root,id);
if(l == r)return;pushdown(rt);if(vala <= mid)rem(ls,id,vala,valb,l,mid);else rem(rs,id,vala,valb,mid + 1,r);}
struct st{int id,a,b;};
st askv(int i,int p){FHQ::node k = FHQ::num(t[root[i]].root,p);return (st){k.id,k.a,k.b};}
int merge(int a,int b){if(a == 0 || b == 0)return a + b;
t[a].root = FHQ::merge(t[a].root,t[b].root);pushdown(a);pushdown(b);
t[a].lc = merge(t[a].lc,t[b].lc);t[a].rc = merge(t[a].rc,t[b].rc);
return a;}
int query(int rt,int L,int R,int le,int ri,int l,int r){if(rt == 0)return 0;if(L <= l && r <= R)return FHQ::idcnt(t[rt].root,le,ri);
pushdown(rt);if(R <= mid)return query(t[rt].lc,L,R,le,ri,l,mid);if(L > mid)return query(t[rt].rc,L,R,le,ri,mid + 1,r);
return query(t[rt].lc,L,R,le,ri,l,mid) + query(t[rt].rc,L,R,le,ri,mid + 1,r);}
int query(int rt,int k,int L,int R,int l,int r){if(l == r)return l;pushdown(rt);int s = (rs == 0 ? 0 : FHQ::idcnt(t[rs].root,L,R));
if(k <= s)return query(t[rt].rc,k,L,R,mid + 1,r);else return query(t[rt].lc,k - s,L,R,l,mid);}
int maxb(int rt,int L,int R,int le,int ri,int l,int r){if(rt == 0)return 0;if(L <= l && r <= R)return FHQ::bmax(t[rt].root,le,ri);
pushdown(rt);if(R <= mid)return maxb(t[rt].lc,L,R,le,ri,l,mid);if(L > mid)return maxb(t[rt].rc,L,R,le,ri,mid + 1,r);
return max(maxb(t[rt].lc,L,R,le,ri,l,mid),maxb(t[rt].rc,L,R,le,ri,mid + 1,r));}
}
int main()
{
srand(time(NULL));
scanf("%d%d",&n,&m);
int opt,x,y,l,r,val,al,ar,a,b;
using namespace ST;
for(int i = 1;i <= n;++i){a = rd();b = rd();ins(root[i],1,a,b,1,N);}
int la = 0;
for(int i = 1;i <= m;++i)
{
opt = rd();
if(opt == 1){x = rd() ^ la;y = rd() ^ la;val = rd() ^ la;st v = askv(x,y);rem(root[x],v.id,v.a,v.b,1,N);ins(root[x],v.id,val,v.b,1,N);}
if(opt == 2){x = rd() ^ la;y = rd() ^ la;val = rd() ^ la;st v = askv(x,y);rem(root[x],v.id,v.a,v.b,1,N);ins(root[x],v.id,v.a,val,1,N);}
if(opt == 3){x = rd() ^ la;y = rd() ^ la;addtag(root[y],FHQ::t[t[root[x]].root].si);root[x] = merge(root[x],root[y]);}
if(opt == 4){x = rd() ^ la;l = rd() ^ la;r = rd() ^ la;val = rd() ^ la;printf("%d\n",la = query(root[x],val + 1,N,l,r,1,N));}
if(opt == 5){x = rd() ^ la;l = rd() ^ la;r = rd() ^ la;val = rd() ^ la;printf("%d\n",la = query(root[x],val,l,r,1,N));}
if(opt == 6){x = rd() ^ la;l = rd() ^ la;r = rd() ^ la;al = rd() ^ la;ar = rd() ^ la;printf("%d\n",la = maxb(root[x],al,ar,l,r,1,N));}
}
return 0;
}
In tag:
数据结构-树套树
Copyright © 2020
wjh15101051
ღゝ◡╹)ノ♡